
 1

Supplementary Materials for

Deep learning spatial phase unwrapping: a comparative review

Kaiqiang Wang,a,b Qian Kemao,c,* Jianglei Di,a,b,d,* and Jianlin Zhaoa,b,*

aNorthwestern Polytechnical University, School of Physical Science and Technology, Shaanxi Key

Laboratory of Optical Information Technology, Xi’an, China
bMinistry of Industry and Information Technology, Key Laboratory of Light Field Manipulation and

Information Acquisition, Xi’an, China
cNanyang Technological University, School of Computer Science and Engineering, Singapore
dGuangdong University of Technology, Guangdong Provincial Key Laboratory of Photonics Information

Technology, Guangzhou, China

*Address all correspondence to Qian Kemao, mkmqian@ntu.edu.sg; Jianglei Di, jiangleidi@nwpu.edu.cn;

Jianlin Zhao, jlzhao@nwpu.edu.cn

S1. Structure of Res-UNet

The Res-UNet are inspired by U-Net [48], residual block [24, 47] and Inception module

[51, 78]. As shown in Fig. S1(a), it consists of an encoding path (left), a decoding path

(right) and a bridge path (middle). The encoding and decoding paths each contain four

residual blocks, while the residual block of the encoding path is followed by max pooling

for downsampling and the residual block of the decoding path is preceded by transposed

convolution for upsampling. As shown in Fig. S1(b), the Inception module is inserted

into residual block, which includes branch 0, branch 1, branch 2, branch 3 and branch 4.

Fig. S1 Structure of (a) Res-UNet and (b) residual block.

S2. Comparison of D_RME and D_RME0

To verify the quality of datasets with different h distributions, we trained Res-UNet by

D_RME and D_RME0 as shown in Table S1. Then, the two trained networks (RME-Net

and RME0-Net) were tested, whose RMSEm and RMSEsd are shown in Table S2. It can

be seen that the RMSEm of RME-Net is significantly lower than that of RME0-Net,

which indicates that assigning more data with high h to the training dataset can improve

 2

the performance of the neural network when other factors (such as the generation method

and number of datasets) are the same.

Table S1 Summary of D_RME and D_RME0.

Datasets sizes
Proportion of h in 10-

30

Proportion of h in

30-35

Proportion of h in

35-40

Training part of D_RME 20,000 50% 20% 30%

Testing part of D_RME 2,000 2/3 1/6 1/6

D_RME0 for training 20,000 2/3 1/6 1/6

Table S2 Accuracy estimation of RME-Net and RME0-Net.

 D_RME D_GFS D_ZPS D_RDR

RMSEm
RME-Net 0.0910 0.0982 0.1336 0.1103

RME0-Net 0.1766 0.1798 0.2019 0.1624

RMSEsd
RME-Net 0.0507 0.1037 0.2320 0.1001

RME0-Net 0.0652 0.1591 0.2265 0.0739

S3. RMSEm and RMSEsd of the congruence results

To verify the effect of congruence operation, we calculated RMSEm and RMSEsd for the

networks and their congruence results, as shown in Table S3. RMSEm for almost all the

results decreases significantly after the congruence operation, except for ZPS-Net,

because ZPS-Net has low raw accuracy on the non-ZPS testing datasets.

Table S3 Accuracy estimation of RME-Net, GSF-Net and ZPS-Net. “-C” represents the

congruence results.

D_RME
D_RME-

C
D_GFS

D_GFS

-C
D_ZPS

D_RME-

C
D_RDR

D_RME-

C

RMSEm

RME-Net 0.0910 0.0002 0.0982 0.0069 0.1336 0.0454 0.1103 0.0093

GSF-Net 0.2263 0.1439 0.0985 0.0007 0.1133 0.0174 0.1184 0.0025

ZPS-Net 2.5148 2.6141 0.4221 0.3862 0.0821 0.0001 0.8245 0.8307

RMSEsd

RME-Net 0.0507 0.0092 0.1037 0.1065 0.2320 0.2455 0.1003 0.0593

GSF-Net 0.4571 0.5280 0.0234 0.0175 0.1077 0.1278 0.1557 0.1900

ZPS-Net 2.8249 2.9398 0.6252 0.7390 0.0220 0.0016 1.1405 1.2896

S4. Comparison of D_RME and D_RME1

To compare the quality of D_RME and D_RME1, we calculated RMSEm for RME-Net

and RME1-Net, as shown in Table S4. It can be seen that RMSEm of RME1-Net is almost

half that of RME-Net.

 3

Table S4 Accuracy estimation of RME-Net and RME0-Net.

 D_RME D_GFS D_ZPS D_RDR

RMSEm
RME-Net 0.0910 0.0982 0.1336 0.1103

RME1-Net 0.0515 0.0468 0.0649 0.0667

S5. A demonstration of dRG phase unwrapping method

In order to enable readers to get started quickly and deeply understand the deep learning-

based phase unwrapping method, we provide a detailed demonstration of dRG here,

including dataset generation, neural network making, training and testing. All the codes

are available in a Github repository

(https://github.com/kqwang/Phase_unwrapping_by_U-Net).

S5.1 Dataset generation

Here we use RME to generate the dataset. On the one hand, the parameters (phase size

and h value range, etc.) are appropriately relaxed to improve the applicability. On the

other hand, Gaussian noise is added to improve the anti-noise performance. Readers can

further adjust the parameters according to actual needs.

The core parts of dataset generation codes (dataset_generation.m) are mainly

explained in Fig. S2:

(a) Set all required parameters, which can be adjusted according to the actual needs

of readers;

(b) Get initial absolute phase by enlarging a small random matrix;

(c) Set the height h so that 50% of the data is within 2/3 of h, 20% of the data is

between 2/3 of h and 5/6 of h, and 30% of the data is between 5/6 of h and h;

(d) Normalize the initial absolute phase to 0-h as network ground truth;

(e) Add Gaussian noise with a standard deviation of 0-noise_max to the absolute

phase (The default value of noise_max is 0);

(f) Calculate the wrapped phase from the noisy absolute phase as network input.

 4

Fig. S2 Core parts of the dataset-generation codes.

All the datasets have been uploaded to the figshare

(https://figshare.com/s/685e972475221aa3b4c4), as shown in Fig. S3. The datasets

generated by dataset_generation.m are as following:

 train_in: The wrapped phase as input of the training dataset is in this folder and

named 000001.mat to 020000.mat;

 train_gt: The absolute phase as ground truth of the training dataset is in this

folder and named 000001.mat to 020000.mat;

 test_in: The wrapped phase as input of the testing dataset is in this folder and

named 000001.mat to 002000.mat;

 test_gt: The absolute phase as ground truth of the testing dataset is in this folder

and named 000001.mat to 002000.mat.

In addition, we provide anther dataset for testing. It is a noise-free testing dataset of

real objects, which includes: candle flames, pits of different arrangements, grooves of

different shapes and tables of different shapes:

 test_in_real: The wrapped phase as input of the real testing dataset is in this

folder and named 000001.mat to 000421.mat;

 test_gt_real: The absolute phase as ground truth of the real testing dataset is in

this folder and named 000001.mat to 000421.mat;

Fig. S3 Datasets for phase unwrapping.

S5.2 Neural network making

 5

According to the structure in Fig. S1, we built the neural network in the file Network.py,

whose core part (residual block) is shown as Fig. S4. The codes of branches in the

residual block are shown in Fig. S5.

Fig. S4 Codes of the residual block.

Fig. S5 Codes of branches in the residual block. (a) branch 0; (b) branch 1; (c) branch 2;

(d) branch 3; (e) branch 4.

 6

S5.3 Neural network training and testing

Before training and testing the neural network, we need to build a python environment

and install the following packages: torch 1.0.1, numpy 1.16.2, tqdm 4.31.1, scipy 1.2.1.

Readers only need to run main_train.py to start training the neural network. It

should be noted that the corresponding parameters need to be set in Lines 15-22 of

main_train.py at first, as shown in Fig. S6. During training, information such as progress

bar and loss function will be displayed and updated every epoch, as shown in Fig. S7.

After training, two files (loss and others.csv and weights.pth) will be saved in the

folder model_weights, as shown in Fig. S8. The former saves the parameters in the

training process, such as learning rate, loss function, time-consuming, etc. The latter

saves the weights and biases of the trained neural network.

Fig. S6 Parameters for network training.

Fig. S7 Training process.

Fig. S8 Files obtained after network training.

By running main_test.py, the reader can use the trained neural network to do some

test. It should be noted that the corresponding parameters need to be set in Lines 14-18 of

main_test.py at first, as shown in Fig. S9. So far, the testing results will be saved in the

folder Resultes in format of .mat.

 7

Fig. S9 Parameters for network testing.

In addition, there are two files that need to be used during network training and

testing, namely train_func.py and dataset_read.py, which are used for network training

and dataset reading, respectively.

Finally, readers can perform error analysis on the testing results in the folder

Resultes by running error_evaluation.m.

S6. A demonstration of dRG phase unwrapping method

We train other neural networks by the datasets with h in the range of [10, 80] and test the

trained neural networks by the datasets with h in the range of [10, 90]. As shown in Fig.

S10, the height adaptive range of the neural network to h increases from the previous 40

to nearly 80.

Fig. S10 RMSEm of the networks for absolute phase in different height.

S7. A demonstration of dDN with wrapped phase denoising

For dDN, we train a network to do denoise directly in wrapped phase. As shown in Fig.

S11, the wrapped phase of the neural network has error with the GT at the edges of the

wrap, causing severe error propagation for the line-scanning method.

 8

Fig. S11 Results of the dDN with wrapped phase denoising.

S8. Congruence results in different noise level

To verify the effect of congruence on dRG and dDN, we compared the RMSE of its

results under different noise levels, and the results are shown in Fig. S12. After

congruence, RMSEm of dRG and dDN decreases to the same level as dWC after

congruence.

Fig. S12 RMSEm of dRG-C, dWC, dDN-C and the WFT-QG method in different noise

levels. “-C” represents the congruence results.

