Supplementary Materials for

Deep learning spatial phase unwrapping: a comparative review

Kaiqiang Wang,^{a,b} Qian Kemao,^{c,*} Jianglei Di,^{a,b,d,*} and Jianlin Zhao^{a,b,*}

^aNorthwestern Polytechnical University, School of Physical Science and Technology, Shaanxi Key Laboratory of Optical Information Technology, Xi'an, China

^bMinistry of Industry and Information Technology, Key Laboratory of Light Field Manipulation and Information Acquisition, Xi'an, China

Nanyang Technological University, School of Computer Science and Engineering, Singapore

^dGuangdong University of Technology, Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangzhou, China

*Address all correspondence to Qian Kemao, <u>mkmqian@ntu.edu.sg</u>; Jianglei Di, <u>jiangleidi@nwpu.edu.cn</u>; Jianlin Zhao, <u>jlzhao@nwpu.edu.cn</u>

S1. Structure of Res-UNet

The Res-UNet are inspired by U-Net [48], residual block [24, 47] and Inception module [51, 78]. As shown in Fig. S1(a), it consists of an encoding path (left), a decoding path (right) and a bridge path (middle). The encoding and decoding paths each contain four residual blocks, while the residual block of the encoding path is followed by max pooling for downsampling and the residual block of the decoding path is preceded by transposed convolution for upsampling. As shown in Fig. S1(b), the Inception module is inserted into residual block, which includes branch 0, branch 1, branch 2, branch 3 and branch 4.

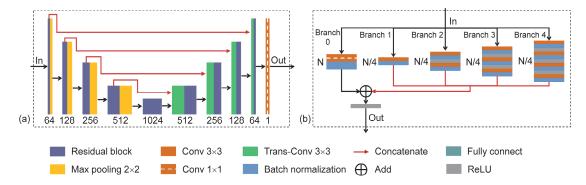


Fig. S1 Structure of (a) Res-UNet and (b) residual block.

S2. Comparison of D_RME and D_RME0

To verify the quality of datasets with different *h* distributions, we trained Res-UNet by D_RME and D_RME0 as shown in Table S1. Then, the two trained networks (RME-Net and RME0-Net) were tested, whose $RMSE_m$ and $RMSE_{sd}$ are shown in Table S2. It can be seen that the $RMSE_m$ of RME-Net is significantly lower than that of RME0-Net, which indicates that assigning more data with high *h* to the training dataset can improve

the performance of the neural network when other factors (such as the generation method and number of datasets) are the same.

Datasets		sizes	Proportion of <i>h</i> in 10-30	Proportion of h in 30-35	Proportion of <i>h</i> in 35-40
Training part of D_RME		20,000	50%	20%	30%
Testing part of D_RME		2,000	2/3	1/6	1/6
D_RME0 for training		20,000	2/3	1/6	1/6
	Table	e S2 Accuracy es	stimation of RME-Net	and RME0-Net.	D_RDR
DMCE	RME-Net	0.0910	0.0982	0.1336	0.1103
RMSE _m	RME0-Net	0.1766	0.1798	0.2019	0.1624
RMSE _{sd}	RME-Net	0.0507	0.1037	0.2320	0.1001
NIVISE _{sd}	RME0-Net	0.0652	0.1591	0.2265	0.0739

Table S1 Summary of D_RME and D_RME0.

S3. RMSE_m and RMSE_{sd} of the congruence results

To verify the effect of congruence operation, we calculated $RMSE_m$ and $RMSE_{sd}$ for the networks and their congruence results, as shown in Table S3. $RMSE_m$ for almost all the results decreases significantly after the congruence operation, except for ZPS-Net, because ZPS-Net has low raw accuracy on the non-ZPS testing datasets.

 Table S3 Accuracy estimation of RME-Net, GSF-Net and ZPS-Net. "-C" represents the

		D_RME	D_RME- C	D_GFS	D_GFS -C	D_ZPS	D_RME- C	D_RDR	D_RME- C
RMSE _m	RME-Net	0.0910	0.0002	0.0982	0.0069	0.1336	0.0454	0.1103	0.0093
	GSF-Net	0.2263	0.1439	0.0985	0.0007	0.1133	0.0174	0.1184	0.0025
	ZPS-Net	2.5148	2.6141	0.4221	0.3862	0.0821	0.0001	0.8245	0.8307
RMSE _{sd}	RME-Net	0.0507	0.0092	0.1037	0.1065	0.2320	0.2455	0.1003	0.0593
	GSF-Net	0.4571	0.5280	0.0234	0.0175	0.1077	0.1278	0.1557	0.1900
	ZPS-Net	2.8249	2.9398	0.6252	0.7390	0.0220	0.0016	1.1405	1.2896

congruence results.

S4. Comparison of D_RME and D_RME1

To compare the quality of D_RME and D_RME1, we calculated $RMSE_m$ for RME-Net and RME1-Net, as shown in Table S4. It can be seen that $RMSE_m$ of RME1-Net is almost half that of RME-Net.

		D_RME	D_GFS	D_ZPS	D_RDR
DMCE	RME-Net	0.0910	0.0982	0.1336	0.1103
RMSE _m	RME1-Net	0.0515	0.0468	0.0649	0.0667

 Table S4 Accuracy estimation of RME-Net and RME0-Net.

S5. A demonstration of dRG phase unwrapping method

In order to enable readers to get started quickly and deeply understand the deep learningbased phase unwrapping method, we provide a detailed demonstration of dRG here, including dataset generation, neural network making, training and testing. All the codes are available in a Github repository (https://github.com/kqwang/Phase_unwrapping_by_U-Net).

S5.1 Dataset generation

Here we use RME to generate the dataset. On the one hand, the parameters (phase size and h value range, etc.) are appropriately relaxed to improve the applicability. On the other hand, Gaussian noise is added to improve the anti-noise performance. Readers can further adjust the parameters according to actual needs.

The core parts of dataset generation codes (*dataset_generation.m*) are mainly explained in Fig. S2:

- (a) Set all required parameters, which can be adjusted according to the actual needs of readers;
- (b) Get initial absolute phase by enlarging a small random matrix;
- (c) Set the height h so that 50% of the data is within 2/3 of h, 20% of the data is between 2/3 of h and 5/6 of h, and 30% of the data is between 5/6 of h and h;
- (d) Normalize the initial absolute phase to 0-h as network ground truth;
- (e) Add Gaussian noise with a standard deviation of 0-*noise_max* to the absolute phase (The default value of *noise_max* is 0);
- (f) Calculate the wrapped phase from the noisy absolute phase as network input.

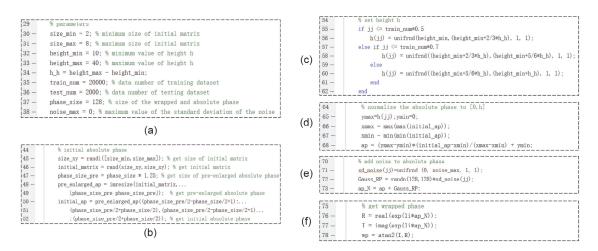


Fig. S2 Core parts of the dataset-generation codes.

All the datasets have been uploaded to the figshare (<u>https://figshare.com/s/685e972475221aa3b4c4</u>), as shown in Fig. S3. The datasets generated by *dataset generation.m* are as following:

- train_in: The wrapped phase as input of the training dataset is in this folder and named 000001.mat to 020000.mat;
- train_gt: The absolute phase as ground truth of the training dataset is in this folder and named 000001.mat to 020000.mat;
- test_in: The wrapped phase as input of the testing dataset is in this folder and named 000001.mat to 002000.mat;
- test_gt: The absolute phase as ground truth of the testing dataset is in this folder and named 000001.mat to 002000.mat.

In addition, we provide anther dataset for testing. It is a noise-free testing dataset of real objects, which includes: candle flames, pits of different arrangements, grooves of different shapes and tables of different shapes:

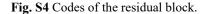
- test_in_real: The wrapped phase as input of the real testing dataset is in this folder and named 000001.mat to 000421.mat;
- test_gt_real: The absolute phase as ground truth of the real testing dataset is in this folder and named 000001.mat to 000421.mat;
 - test_gt
 test_gt_real
 test_in
 test_in_real
 train_gt
 train_in

Fig. S3 Datasets for phase unwrapping.

S5.2 Neural network making

According to the structure in Fig. S1, we built the neural network in the file *Network.py*, whose core part (residual block) is shown as Fig. S4. The codes of branches in the residual block are shown in Fig. S5.

95	' Residual block with Inception module '
96	class ResB(nn. Module):
97	<pre>definit(self, in_ch, out_ch):</pre>
98	<pre>super(ResB, self)init()</pre>
99	self.branch0 = Branch0(in_ch, out_ch)
100	self.branch1 = Branch1(in_ch, out_ch // 4)
101	self.branch2 = Branch2(in_ch, out_ch // 4)
102	self.branch3 = Branch3(in_ch, out_ch // 4)
103	self.branch4 = Branch4(in_ch, out_ch // 4)
104	<pre>self.rl = nn.LeakyReLU(inplace=True)</pre>
105	def forward(self, x):
106	x0 = self.branch0(x)
107	<pre>x1 = self.branch1(x)</pre>
108	x2 = self.branch2(x)
109	x3 = self.branch3(x)
110	x4 = self.branch4(x)
111	x5 = torch.cat((x1, x2, x3, x4), dim=1)
112	x6 = x0 + x5 cat
113	x7= self.rl(x6)
114	- return x7



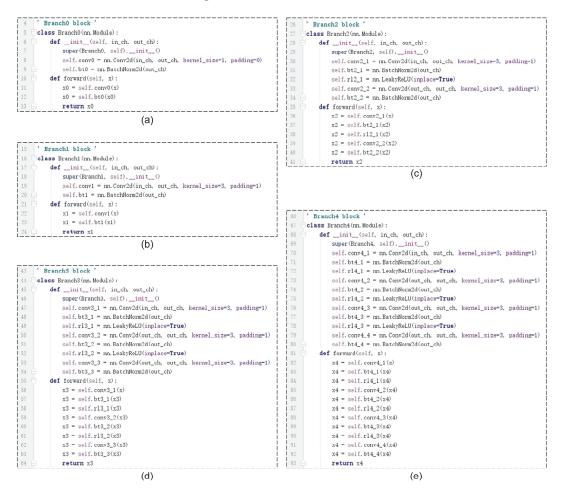


Fig. S5 Codes of branches in the residual block. (a) branch 0; (b) branch 1; (c) branch 2; (d) branch 3; (e) branch 4.

S5.3 Neural network training and testing

Before training and testing the neural network, we need to build a python environment and install the following packages: torch 1.0.1, numpy 1.16.2, tqdm 4.31.1, scipy 1.2.1.

Readers only need to run *main_train.py* to start training the neural network. It should be noted that the corresponding parameters need to be set in Lines 15-22 of *main_train.py* at first, as shown in Fig. S6. During training, information such as progress bar and loss function will be displayed and updated every epoch, as shown in Fig. S7.

After training, two files (*loss and others.csv* and *weights.pth*) will be saved in the folder *model_weights*, as shown in Fig. S8. The former saves the parameters in the training process, such as learning rate, loss function, time-consuming, etc. The latter saves the weights and biases of the trained neural network.

12	' Definition of the needed parameters '
13	def get_args():
14	parser = OptionParser()
15	parser.add_option('-e', 'epochs', dest='epochs', default=100, type='int', help='number of epochs')
16	parser.add_option('-b', 'batch size', dest='batch_size', default=32, type='int', help='batch size')
17	parser.add_option('-1', 'learning rate', dest='lr', default=0.01, type='float', help='learning rate')
18	parser.add_option('-r', 'root', dest-'root', default-"", help-'root directory')
19	parser.add_option('-i', 'input', dest='input', default='train_in', help='folder of input')
20	parser.add_option('-g', 'ground truth', dest='gt', default='train_gt', help='folder of ground truth')
21	parser.add_option('-s', 'model', dest='model', default='model_weights', help='folder for model/weights')
22	parser.add_option('-v', 'val percentage', dest='val_perc', default=0.05, type='float', help='validation percentage')
23	(options, args) = parser.parse_args()
24	return options

Fig. S6 Parameters for network training.

	Current epoch	Elapsed time of curre	ent epoch		Training loss	
2%	2/100 [04:04	<3:19:56, 122.42s/it]	\ Learning rate =	0.006141 Trai	n_Loss: 4.25338	Val_loss: 5.080131
3%	3/100 [06:06	(3:17:33, 122.20s/it]	\ Learning rate =	0.00522 Train	Loss: 3.849903	Val_loss: 4.359725
4%	4/100 [08:08	<3:15:15, 122.04s/it]	\ Learning rate =	0.004437 Train	n_Loss: 3.609853	Val_loss: 4.508025
5%	5/100 [10:09	<3:13:01, 121.91s/it]	\ Learning rate =	0.003771 Trai:	n_Loss: 3.417147	Val_loss: 4.141512
<u> </u>		~/	·			
Current pro	gress Elapsed an	d remaining time	Learning r	ate		Valuation loss

Ха,	
loss and others.csv	weights.pth

Fig. S8 Files obtained after network training.

By running *main_test.py*, the reader can use the trained neural network to do some test. It should be noted that the corresponding parameters need to be set in Lines 14-18 of *main_test.py* at first, as shown in Fig. S9. So far, the testing results will be saved in the folder *Resultes* in format of *.mat*.

```
11 ' Definition of the needed parameters '
12 (def get_args():
13 parser - OptionParser()
14 parser.add_option('-e', '--result', dest-'result', default='Results', help-'folder of results')
15 parser.add_option('-r', '--result', dest-'root', default='', help-'root directory')
16 parser.add_option('-i', '---model', dest='model', default=''model_weights/weights.pth', help='folder for model/weights')
17 parser.add_option('-i', '---input', dest='input', default=''test_in', help='folder of input')
18 parser.add_option('e', '---gt', dest='gt', default=''test_gt', help='folder of ground truth')
19 (options, args) = parser.parse_args()
20 (- return options
```

Fig. S9 Parameters for network testing.

In addition, there are two files that need to be used during network training and testing, namely *train_func.py* and *dataset_read.py*, which are used for network training and dataset reading, respectively.

Finally, readers can perform error analysis on the testing results in the folder *Resultes* by running *error_evaluation.m*.

S6. A demonstration of dRG phase unwrapping method

We train other neural networks by the datasets with h in the range of [10, 80] and test the trained neural networks by the datasets with h in the range of [10, 90]. As shown in Fig. S10, the height adaptive range of the neural network to h increases from the previous 40 to nearly 80.

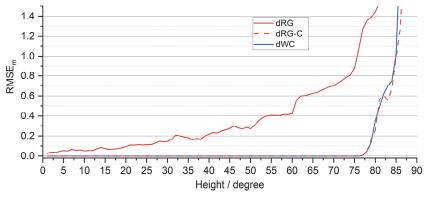


Fig. S10 RMSE_m of the networks for absolute phase in different height.

S7. A demonstration of dDN with wrapped phase denoising

For dDN, we train a network to do denoise directly in wrapped phase. As shown in Fig. S11, the wrapped phase of the neural network has error with the GT at the edges of the wrap, causing severe error propagation for the line-scanning method.

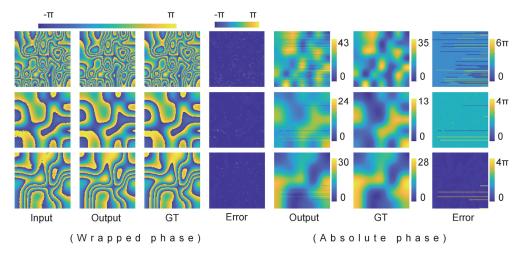


Fig. S11 Results of the dDN with wrapped phase denoising.

S8. Congruence results in different noise level

To verify the effect of congruence on dRG and dDN, we compared the RMSE of its results under different noise levels, and the results are shown in Fig. S12. After congruence, $RMSE_m$ of dRG and dDN decreases to the same level as dWC after congruence.

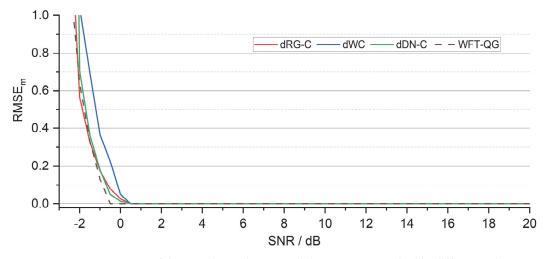


Fig. S12 RMSE_{*m*} of dRG-C, dWC, dDN-C and the WFT-QG method in different noise levels. "-C" represents the congruence results.